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[a] mathematician is a Platonist on weekdays and a Formalist on Sundays.  That is, when doing mathematics he is 
convinced that he is dealing with objective reality … when challenged to give a philosophical account of this reality, 
he finds it easiest to pretend that he does not believe in it after all. ~P. Davis

Mathematics is Language

Nouns Verbs
scalar, vector scalar, dot & cross products,

scalar & vector addition
gradient, curl, …

real, imaginary addition, multiplication,
conjugation, …

points, line, circles … intersection, union, …

Primitive

Vector Algebra

Complex Analysis

Synthetic Geometry

A Redundant Language

• Synthetic Geometry
Coordinate Geometry
Complex Numbers
Quaternions
Vector Analysis
Tensor Analysis
Matrix Algebra
Grassmann Algebra
Clifford Algebra
Spinor Algebra
…

• Consequences
– Redundant learning
– Complicates knowledge access
– Frequent translation
– Lower concept density, i.e., theorems / definitions

Geometric
Concepts

A language for geometry

Properties of nouns
• Grade - dimension 

Properties of nouns
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Geometric
Concepts

Algebraic
Language

Hermann Grassmann 1809 - 1877 (Our Hero)
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A language for geometry

Properties of nouns
• Grade - dimension 
• Direction - orientation, attitude, how it sits in space
• Magnitude - scalar 

Properties of nouns
• Grade - dimension 
• Direction - orientation, attitude, how it sits in space
• Magnitude - scalar 

Geometric
Concepts

Algebraic
Language

Hermann Grassmann 1809 - 1877 (Our Hero)

A language for geometry

Properties of nouns
• Grade - dimension 
• Direction - orientation, attitude, how it sits in space
• Magnitude - scalar 
• Sense - positive/negative, up/down, inside/outside

Properties of nouns
• Grade - dimension 
• Direction - orientation, attitude, how it sits in space
• Magnitude - scalar 
• Sense - positive/negative, up/down, inside/outside

Geometric
Concepts

Algebraic
Language

Hermann Grassmann 1809 - 1877 (Our Hero)

Geometric Algebra
D. Hestenes, New Foundations for Classical Mechanics, Kluwer Academic Publishers, 1990

Primitive nouns
• Point α scalar grade 0 
• Vector a directed line grade 1
• Bi-vector A directed plane        grade 2
• Tri-vector T directed volume     grade 3
• Etc.

Primitive nouns
• Point α scalar grade 0 
• Vector a directed line grade 1
• Bi-vector A directed plane        grade 2
• Tri-vector T directed volume     grade 3
• Etc.

Geometric
Concepts

Algebraic
Language

a ⊥ b ⊥ c => (ab) c = a (bc) = T

Verbs 

• Addition

• Multiplication

• Commutivity

• Anticommutivity

• Associativity

• and others

c

a
b c = a + b = b + a

a
b A = -BA = ab

a

-bB = -ba

a
b a || b => ab = ba

a

b
a ⊥ b => ab = - ba

Geometric
Concepts

Algebraic
Language

Prepositions
William Kingdon Clifford 1845 - 1879  (Another Hero) 

• Complex analysis

Addition defines relation, i.e.   a + i b ≡ (a, b)

Prepositions
William Kingdon Clifford 1845 - 1879  (Another Hero) 

• Complex analysis

Addition defines relation, i.e.   a + i b ≡ (a, b)

• Clifford’s “geometric product” for vectors

ab = a ⋅ b + a ∧ b
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Prepositions
William Kingston Clifford 1845 - 1879  (Another Hero) 

• Complex analysis

Addition defines relation, i.e.   a + i b ≡ (a, b)

• Clifford’s “geometric product” for vectors

ab = a ⋅ b + a ∧ b

scalar bi-vector
( dot product) (exterior product)

Prepositions
William Kingston Clifford 1845 - 1879  (Another Hero) 

• Complex analysis

Addition defines relation, I.e. a + i b ≡ (a, b)

• Clifford’s “geometric product” for vectors

ab = a ⋅ b + a ∧ b

scalar bi-vector
( dot product) (exterior product)

prepositional add

Geometric Algebra

Nouns k-vectors (scalar, vector, bi-vector …)

• Point α scalar grade 0 
• Vector a directed line grade 1
• Bivector A = a∧b directed plane        grade 2
• Trivector T = a∧b ∧c directed volume     grade 3

• k-vector V = a1∧… ∧ak grade k

Geometric Algebra

Nouns k-vectors (scalar, vector, bi-vector …)

and multivectors (sums of k-vectors)

• Point α scalar grade 0 
• Vector a directed line grade 1
• Bivector A directed plane        grade 2
• Trivector T directed volume     grade 3
• …
• Multivector M sum of k-vectors    mixed grade

(M = α + a + A + T + …)

The Geometric Product

Verbs - what can two vectors do?

• Project
a

b

The Geometric Product

Verbs - what can two vectors do?

• Project

• Define bi-vector
a

b A = -BA = ab

b
aB = ba
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The Geometric Product

Verbs - what can two vectors do?

• Project

• Define bi-vector

• Commute a
b a || b => ab = ba

The Geometric Product

Verbs - what can two vectors do?

• Project

• Define bi-vector

• Commute

• Anti-commute a

b
a ⊥ b => ab = - ba

The Geometric Product

What can two vectors do?
• Project

• Define bi-vector

• Commute

• Anti-commute

ab = a⋅ b + a ∧ b

a
b A = -BA = ab -b

a

B = -ba

a
b

a
b a || b => ab = ba

a

b
a ⊥ b => ab = - ba

The Geometric Product

… is more basic!!
Define vector dot product in terms of GP

a · b = 1/2 (ab + ba) scalar

Define vector wedge product in terms of GP

a ∧ b = 1/2 (ab - ba) bivector

(a · b + a ∧ b = ab)

Examples

Reflection

For a2 = 1, -a x a = -a (xpar + xperp) a 
= - (a xpar + a xperp) a
= - (xpar a - xperp a) a 
= - (xpar - xperp) a2

= - xpar + xperp = x´

xpar
a x

xperp

-xparx´GA

Examples

Rotations (b2=1)

x´´ = -b x´b = -b (-a x a) b = (b a) x (a b)
(b a) x (a b) rotates x
through 2 ∠ ab b a

x

x´

x´´
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Examples

Rotations (any vectors a, b)

Let R = ab, define reverse R~ = ba = (ab)~

then 

x´´ = -b x´b = -b (-a x a) b = (b a) x (a b)

b a
x

x´

x´´

Examples

Rotations (any vectors a, b)

Let R = ab, define reverse R~ = ba = (ab)~

then 

x´´ = -b x´b = -b (-a x a) b = (b a) x (a b)

General form of rotation:

x´´ = R~ x R

b a
x

x´

x´´

Examples   
Let  a • b = 0   and a2 = b2 = 1,   define i = a b = -b a

i is an operator:

a i = a ( a b ) = a2 b = b
rotates a by 90 degrees to b
b i = ( a i ) i = a i2 = -a
rotates a twice, giving i2 = -1

i i
b

-a a

Examples   
Let  a · b = 0   and a2 = b2 = 1,   define i = a b = -b a

i is an operator:

a i = a ( a b ) = a2 b = b
rotates a by 90 degrees to b
b i = ( a i ) i = a i2 = -a
rotates a twice, giving i2 = -1

Bivectors rotate vectors ( ! )

i i
b

-a a

Recapitulation

• Graded elements with sense, direction and 
magnitude

• Addition - verb and preposition form
• Geometric product is sum of lower and higher 

grades
• Dot and Wedge products defined by GP
• Two-sided vector multiplication reflects vectors
• Bivector multiplication rotates vectors
• Special unit bivector I  (pseudoscalar)

Axioms

1. Algebra with non-commutative multiply

Think of matrix algebra
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Axioms

1. Algebra with non-commutative multiply
2. Scalar multiplication commutes λ A = A λ
3. For vector a2 = |a|2 ≥ 0, a scalar
4. a • Ak is a k-1 vector and a ∧ Ak is a k+1 vector 

where  a • Ak = ½ (aAk – (-1)k Ak a
and     a ∧ Ak = ½ (aAk + (-1)k Ak a)

Differentiate elements of different grade

Axioms

1. Algebra with non-commutative multiply
2. Scalar multiplication commutes λ A = A λ
3. For vector a2 = |a|2 ≥ 0, a scalar
4. a • Ak is a k-1 vector and a ∧ Ak is a k+1 vector 

where  a • Ak = ½ (aAk – (-1)k Ak a
and     a ∧ Ak = ½ (aAk + (-1)k Ak a)

Generalizes dot and wedge products

Axioms

Truncates space to k dimensions

5.  a ∧ Ak = 0 for a k-dimensional space

Axioms

1. Non-commutative algebra – add and multiply
2. Scalar multiplication commutes λ A = A λ
3. For vector a2 = |a|2 ≥ 0, a scalar
4. a • Ak is a k-1 vector and a ∧ Ak is a k+1 vector 

where  a • Ak = ½ (aAk – (-1)k Ak a
and     a ∧ Ak = ½ (aAk + (-1)k Ak a)

5.  a ∧ Ak = 0 for a k-dimensional space

Axiom Implications

1. Algebra with non-commutative multiply

Vector inverse   x-1 = x / ||x|| for ||x|| ≠ 0

Axiom Implications

One equation yields separate graded equations:

V = α + a + B + T  ⇒

<V>0 = α
<V>1 = a
<V>2 = B 
<V>3 = T 

Where <V>k is the k-vector part of V
…and many other algebraic devices
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Example Algebra

Straight Lines
(x-a) ∧u = 0 defines line

u

a

Example Algebra

Straight Lines
(x-a) ∧u = 0 defines line
x ∧u = x ∧a = M, a bivector
(x ∧u)u-1 = Mu-1 (division by vector!)

u

a

Example Algebra

Straight Lines
(x-a) ∧u = 0 defines line
x ∧u = x ∧a = M, a bivector
(x ∧u)u-1 = Mu-1 (division by vector!)
(x ∧u) • u-1 + (x ∧u) ∧ u-1 = Mu-1  (expansion of GP)
(x ∧u) • u-1 + 0 = Mu-1 (wedging parallel vectors)

u

a

Example Algebra

Straight Lines
(x-a) ∧u = 0 defines line
x ∧u = x ∧a = M, a bivector
(x ∧u)u-1 = Mu-1 (division by vector!)
(x ∧u) • u-1 + (x ∧u) ∧ u-1 = Mu-1  (expansion of GP)
(x ∧u) • u-1 + 0 = Mu-1 (wedging parallel vectors)
x – (x • u) u-1 = Mu-1 (Laplace reduction theorem)
x = (M + x • u) u-1

= (M + α) u-1

Parametric form for fixed M and u.

u

a

Example Algebra

Straight Lines
(x-a) ∧u = 0 defines line
x = (M + α) u-1

Parametric form for fixed M and u.
let d = Mu-1

x = d + α u-1

Since d • u = Mu-1 • u
d • u = 0 (grade equivalence)

d is orthogonal to u

u

a

d

Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

Let z = ab = a · b + a ∧ b  (a2 = b2 = 1)

Let z† = ba = (ab)† (reverse = conjugate)

Since a · b = ½(ab + ba) = ½(z + z†) 

= Re z = λcosθ

and a ∧ b = ½(ab - ba) = ½(z - z†)

= Im z = λisinθ

then z = λ(cos θ + isinθ) = λeiθ

The shortest path to truth in the real domain 
often passes through the complex domain

Hadamard
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Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

Let σ1, σ2 and σ3 be 
orthonormal basis vectors
then 

{1,  σ1, σ2, σ3, σ1σ2, σ1σ3, σ2σ3,  σ1σ2 σ3 }

is a basis for the geometric algebra over R3

Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

Let σ1, σ2 and σ3 be 
orthonormal basis vectors
then 

{1,  σ1, σ2, σ3, σ1σ2, σ1σ3, σ2σ3,  σ1σ2 σ3 }

Scalar     vector    bivector       trivector

Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

Let σ1, σ2 and σ3 be 
orthonormal basis vectors
then 

Let  I = σ1σ2 σ3 , the pseudoscalar

What are:    (σ1σ2 σ3 )2 = I 2?    I σ1?   I σ1 σ2? 

Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

(σ1σ2 σ3 )2 = I 2 = -1

I σ1 ?

I σ1 σ2 ? 

Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

(σ1σ2 σ3 )2 = I 2 = -1    
I σ1 = σ2 σ3

transforms σ1 to σ2σ3

I σ1 σ2 = - σ3

transforms σ1 σ2 to - σ3σ1

σ2σ3

I σ1 = σ2 σ3

Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

In general: 

scalar

vector

•

•

N-1 vector

N vector

Pseudoscalar 
multiplication
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Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

Let  i = σ2 σ3

j = - σ3 σ1

k = σ1 σ2

then

i 2 = j 2 = k 2 = -1  and  i j k = -1

Hamilton’s equations for quaternions!

Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

If (s, q1, q2, q3) is a quaternion

then

R = s + i q1 + j q2+ k q3

scalar bivector

Is a general rotor in GA Recall x' = RxR~

Note: i, j, k are bivectors!

Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

a× b = i a∧ b

a∧ b = -i a× b 

a

b

Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

A = bc

B = ca

C = AB?

c

a

b

BA

Representations

Complex analysis
Duality
Quaternions
Vector algebra
Spherical geometry

A = bc

B = ca

C = AB =bcca = ba

c

a

b

C

Advantages of GA

• Unifying
– compact knowledge, enhanced learning, 

eliminates redundancies and translation

• Geometrically intuitive
• Efficient

– reduces operations, coordinate free, 
separation of parts

• Dimensionally fluid
– equations across dimensions
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Advantages of GA

• Unifying
• Geometrically intuitive
• Efficient
• Dimensionally fluid
• A better language

(x+y)/2 ± [(x+y)2/4 - xy]1/2

Fini

Bivectors

≠

Examples:

Not two vectors


